James MURE-DUBOIS rue des Parcs, 67 CH-2000 Neuchâtel Tel : +41 77 485 54 70 jmuredubois@outlook.com Swiss and french citizen

Armed with experience in research and development projects, I am looking for a position offering stimulating technical challenges, along with opportunities to build strong relationships with a dynamic team.

Professionnal record

Jan 2013–	Intermec Scanner Technology Center - Toulouse, France
Jun 2014	Software engineer Image processing aiming at improving 1D and 2D barcode
(18 months)	decoding libraries
	▷ Algorithms for high dynamic range images. ▷ Setup of a blackbox testing solution.
Feb 2012–	NTU (Nanyang Technological University) - Singapore
Nov 2012	Research scientist in the Radar Centre of Temasek Laboratories Algorithms
(10 months)	for high-resolution SAR imaging from highly unstable platforms
	\triangleright Motion compensation and autofocus algorithms in the unstable SAR imaging
	$context. \triangleright High robustness to undesired motion through custom SAR imaging chain.$
Dec 2009–	TéSA (Telecommunications for Space and Aeronautics) - Toulouse
Nov 2011	Research scientist in the Signal Processing unit Signal processing algorithms
(2 years)	for radar data measured with embedded automotive sensors.
	\triangleright High resolution applications of synthetic aperture radar and digital beamforming
	$algorithms. \triangleright Required compliance with stringent automotive industry requirements.$
2005 - 2009	Institute of microtechnology (Univ. of Neuchâtel - EPFL)
(4 years)	Research-assistant in the pattern recognition laboratory (PARLAB). Contri-
	buting to various research projects in the lab, involvment in teaching for the
	pattern recognition and microprocessors lectures.
	\triangleright Research projects in collaboration with industry (CTI). \triangleright Mentoring students for
	semester and diploma projects.
2005	Logitech Inc Fremont, California
(6 months)	Intern in the system engineering department of the webcam division. Working
	on a project aiming to improve audio quality in webcam conversations.
	\triangleright Audio signal processing. \triangleright Constraints for mass produced devices.
2004	Paul Scherrer Institute - Villigen, Suisse
(3 months)	Intern at the laboratory of micro et nano-technology (LMN). Optimization
	of a setup producing large structures with sub-micron resolutions.
	\triangleright Work in clean room environment. \triangleright Laser interference lithography.

Education

2005 - 2009	PhD in Microtechnology
	Contributions to image processing algorithms for advanced 3D vision devices.
	IMT-PARLAB (Univ. of Neuchâtel - EPFL).
2000 - 2005	Master of Science in Micro- and Nanotechnology
	cum laude University of Neuchâtel.
1997 - 2000	Scientific high school diploma
	magna cum laude. Lycée Denis-de-Rougemont, Neuchâtel.

IT skills

Oper. systems :	MS Windows (7, 8, XP), Linux (Ubuntu, Debian), Mac OS X
Programming :	Matlab, C, C++, Python, C#, Java, LabView
Development :	MS Visual Studio, Eclipse, Xcode, git, hg, SVN, , ClearCase, CVS
Languages	

French :	Mother tongue.
English :	fluent.
German :	read, basic redaction, general conversation.

Research interests

Image processing : 3D images acquisition, fast filtering for reduction of measurement errors, registration of multiple 3D views, segmentation.

Low power signal processing : Selection of appropriate architecture, complying with application requirements in the most efficient manner, for embedded systems with low power constraints or image processing systems with real-time requirements.

Radar signal processing: Definition of radar architecture, waveform selection, low level processing for extraction of basic information (distance, velocity), array processing methods (Digital Beam Forming, Synthetic Aperture Radar) for positioning applications.

Selected research projects

2012	Unstable SAR project
(10 months)	Low weight radar carriers tend to have unstable trajectories leading to non-optimal SAR image focusing, even after motion compensation. This research project investi-
	gated efficient SAR focusing strategies allowing to mitigate the effects of undesired
	motion. Post-doc, collaboration with Temasek Laboratories at NTU and DSO.
2009-2011	id4car ARPOD project
(24 months)	Automotive radar systems embedded in automotive vehicles enhance the level of
	protection for all road users. DBF and SAR algorithms were developed for 77GHz FMCW radar prototypes, and feasibility was demonstrated for two new applica-
	tions in parking assistance and pedestrian detection. Post-doc, collaboration with
	François Vincent, ISAE Toulouse.
2010	FP7 MOSARIM project
(8 months)	State-of-the-art review of interference mitigation techniques in the context of em- bedded automotive radars and preliminary evaluation of selected CDMA methods
	through Matlab simulations.
2005 - 2009	Contrib. to image processing algorithms for advanced 3D vision devices
(4 years)	Research work focused on 3D vision for microassembly and on real-time 3D vision
	with time-of-flight (TOF) methods. Various algorithms for reduction of measure-
	ment errors have been developped. Eventually, a network of TOF cameras was
	implemented, for application in surveillance systems. <i>PhD thesis - Thesis director :</i>
200 <i>2</i> 200 -	Heinz Hügli (IMT-PARLAB, Univ. of Neuchâtel).
2006-2007	CTI PersPass project
(12 months)	The aim of project PersPass was to develop more flexible access-control systems, taking advantage of 3D cameras. A demonstration setup was realized during the
	project. Various access-control systems based on 3D vision have since been com-
2005-2006	mercialized by the project's industrial partner. CTI MiniVision project
(12 months)	The Minivision project aimed to develop a miniature 3D vision system with high
(12 months)	resolution, and potential for embedment. The target application was visual servoing
	for a micro-assembly robot based on parallel architecture, allowing for high assembly
	throughput. A prototype of miniature depth-from-focus microscope was realized,
	and its depth resolution was characterized.
2005	Software beam forming for low cost microphone array
(6 months)	Study of noise reduction methods involving microphone arrays, within boundaries
,	imposed by Logitech Inc. for hands-free audio-video conversation. Master's thesis
	- Mentors : Jean-Michel Chardon (Logitech Inc., Fremont, CA) and Giuseppina
	Biundo (IMT-ESPLAB, Univ. of Neuchâtel). Grade : 5/6
2004	Realization of periodic line patterns by laser interference lithography
(3 months)	Short project : optimization of a laser interference lithography setup for producing
	gratings with sub-micron resolution on large areas. Internship - Mentor : Harun
	Solak (LMN, Paul Scherrer Institute, Villigen)

Hobbies and interests

Mountains :	Hiking (on foot, or with snowshoes), jogging, skiing. Planning GR20
Reading :	Nonspecialist science books (Hawking, Greene), Science-fiction (Herbert, Asi-
	mov), spy novels (Clancy), biographies (Feynmann, Einstein)
Miscellaneous :	Cinema, cooking.