Automated inspection of microlens arrays

James Mure-Dubois and Heinz Hügli

University of Neuchâtel Institute of Microtechnology, 2000 Neuchâtel, Switzerland

Optical and Digital Image Processing - 07.04.2008

Microlens arrays inspection

(2) Inspection methods and comparison

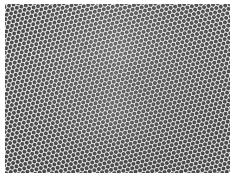
- Reference subtraction
- Blob analysis
- Object detection based on blob analysis
- 4 Semi-automated inspection system

5 Conclusion

▲ @ ▶ < ∃ ▶</p>

Microlens arrays inspection

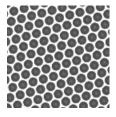
- Inspection methods and comparison
 Reference subtraction
 Black enclosis
 - Blob analysis
- 3 Defect detection based on blob analysis
- 4 Semi-automated inspection system


5 Conclusion

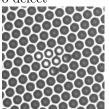
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

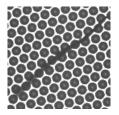
Microlens arrays

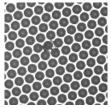
- Optical devices combining many small lenses.
- Used for collimation, illumination, imaging[?] ...

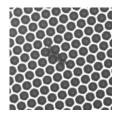


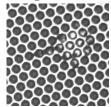
Specificities for this work:


- Small lenses :
 - $10 \leq d \leq 50 \ \mu m.$
- Gaps coated with metal.
- Device with more than 2000000 lenses!


Inspection - Array defects

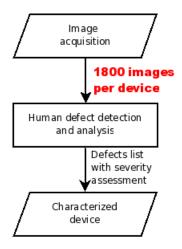

No defect


Metal covering


Filament on array

Bad lens

Missing metal



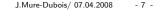
Defects combination

Semi-automated inspection system

- The number of images to inspect is large.
- Human inspection is slow and reliability is low.
- Most images contain no defects.
- Automated defect detection can speed-up the inspection.

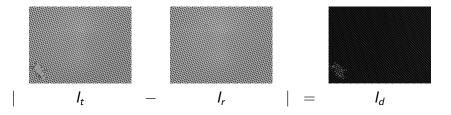
Microlens arrays inspection

2 Inspection methods and comparison


- Reference subtraction
- Blob analysis

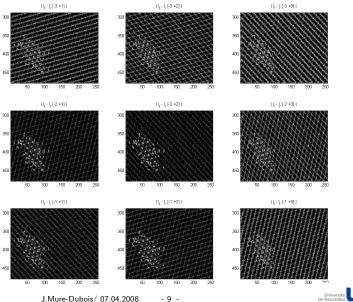
3 Defect detection based on blob analysis

4 Semi-automated inspection system


5 Conclusion

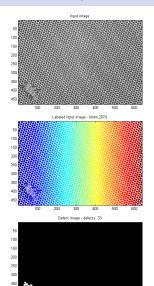
Reference subtraction

Advantages :


- Short processing time.
- Low memory requirements.

Disadvantages :

- Requires accurate alignment.
- Sensitive to coarse sampling.


Alignment and coarse sampling issue

imt

-

Blob analysis

Advantages :

- Insensitive to alignment and coarse sampling.
- Simple, parametric lens models can be used.
- Easily adapted to new lens array geometry.

Disadvantage :

• Segmentation is critical.

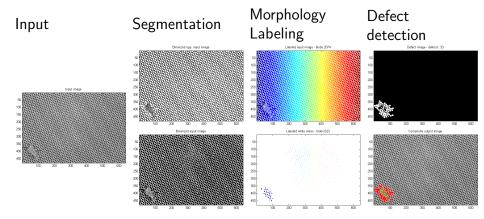
J.Mure-Dubois/ 07.04.2008 - 10 -

Challenge	Reference sub.	Blob anal- ysis
Illumination may vary (gradients + vignetting)	_	0
No alignment between array lattice and image axes		++
Defects may vary greatly in size and intensity characteristics	++	++
Short processing time $(<1s)$	++	+

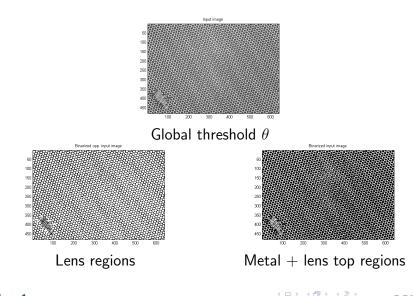
▲□▶ ▲圖▶ ▲国▶ -

Université de Neuchâtel

Microlens arrays inspection

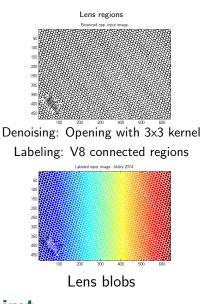

- Inspection methods and comparison
 Reference subtraction
 Blob analysis
- Oefect detection based on blob analysis
 - 4 Semi-automated inspection system

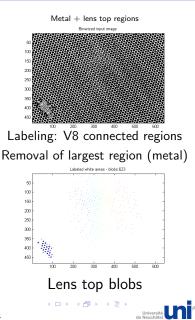
5 Conclusion


Blob analysis - Process

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

Segmentation

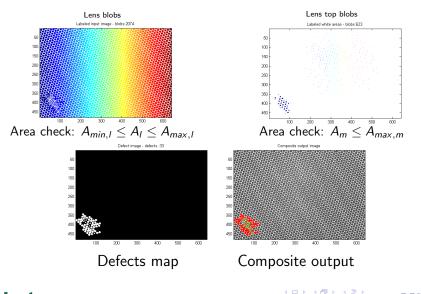




J.Mure-Dubois/ 07.04.2008 - 14

- 14 -

Morphology and labeling



J.Mure-

J.Mure-Dubois/ 07.04.2008 - 15 -

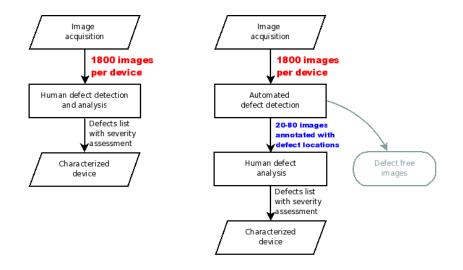
Blob area analysis

J.Mure-Dubois/ 07.04.2008 - 1

- 16 -

Université

de Neuchâte

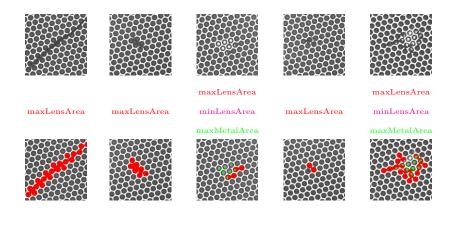

Microlens arrays inspection

- Inspection methods and comparison
 Reference subtraction
 Plab applysis
 - Blob analysis
- 3 Defect detection based on blob analysis
- 4 Semi-automated inspection system

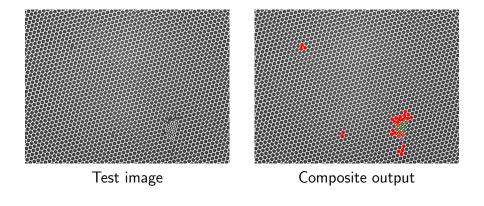
5 Conclusion

Semi-automated inspection system

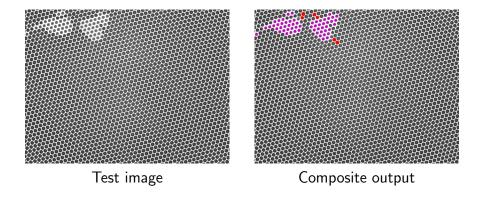
The defect detection module is implemented in Matlab and uses the Image Processing Toolbox.


Parameters considered:

- segmentation intensity → segmThr
- lens area \rightarrow
 - minArea, maxArea
- maximum *hole* area → maxWhiteArea

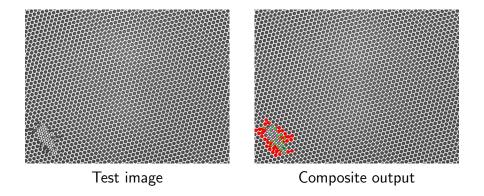

🗟 Edite	or - D:WserskmurejWocumentsWMT\prjV.ensDefectsWatlab\blob_script.m				
Ele Ed	t Iext Gell Tools Debug Desktop Window Help ***				
0 🥔	🖩 X 釉 ඬ 🕫 😁 🎒 🕂 🖯 彩 🗐 釉 副 印刷 Staty Staty 🗤 🛛 🕀 🗆 🕀				
22	· · · · · · · · · · · · · · · · · · ·				
23	23 %% initialize structure which will contain parameters				
24 %% for the worker function (blob MinMax Area.m)					
25 -	5 - paramsBlob.imName = '';				
26 -	26 - paramsBlob.showGraphics = 0; %% DEBUG : display and PAUSE ir				
27 -	7 - paramsBlob.minArea = 065 % minimum area setting				
28 -	8 - paramsBlob.maxArea = 12) %% maximum area setting				
29 -	29 - paramsBlob.segmThr = 120; %% bin. segment. setting				
30					
31 -	paramsBlob.minAreaWhite = 000; %% minimum area setting				
32 - paramsBlob.maxAreaWhite = 013;) %% maximum area setting					
	K				
🗄 blob_script.m 🗏 caption_blobscript_disp.m 🗏 blob_MinMax_Area_MinThorough.m 🗵					
	blob_script Ln 26 Col 37 OVR				

Blob area - Defect detection

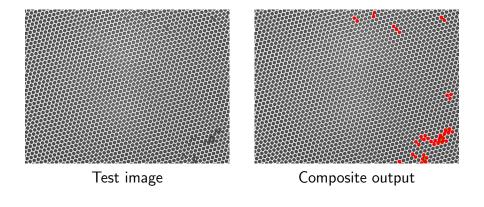


J.Mure-Dubois/ 07.04.2008

イロト イヨト イヨト・



J.Mure-Dubois/ 07.04.2008 - 22



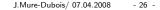
イロト イヨト イヨト・

J.Mure-Dubois/ 07.04.2008 - 24

・ロト ・ 日下 ・ モート

Tests carried out on devices with a high number of defects.

Device	А	В
Images acquired	1804	1804
Defect detected automatically	446	242
Independent human annotation		
Defects found	133	58
False positive rate	17.4%	10.2%
False negative rate	0%	0%
Semi-automated human annotation		
Defects found	433	242
False positive rate	0.72%	0%
False negative rate	0%	0%


▲□▶ ▲圖▶ ▲≣▶ ○

Microlens arrays inspection

- Inspection methods and comparison
 Reference subtraction
 Plab analysis
 - Blob analysis
- 3 Defect detection based on blob analysis
- 4 Semi-automated inspection system

5 Conclusion



Conclusions

- Image processing methods enabling automation of microlens arrays inspection were studied
- An automated **defect detection** system was realized, based on a blob analysis method
- Tests confirm that no defect goes through the system.
- Tests show a low false positive rate: the human supervisor is freed from the burden of watching large series of defect free images.
- Possible improvements:
 - Automatic parameter generation from reference images
 - Smarter segmentation methods (gradient based)

The authors would like to thank B. Putz and K. Weible at SUSS MicroOptics, for providing the annotated test image databases

Thank you for your attention !

A B > A B >

P. Nussbaumy, R. Voelkel, H.-P. Herzig, M. Eisner, and S. Haselbeck.

Design, fabrication and testing of microlens arrays for sensors and microsystems.

Pure Appl. Opt., 6:617-636, 1997.

A B > A B >